Skip to content
González Research Group

González Research Group

Menu

  • Home
  • People
    • Current
    • Awards
    • Memberships
    • Alumni
    • Guests
  • Teaching
    • Courses
    • Seminars
      • Seminars
      • Search Seminars
    • Bachelor Students
  • Research
    • Overview
    • Financial Support
    • Cooperations
  • Publications
    • Journals
    • Theses
      • Theses
      • Research Internship Protocols
    • Journal Covers
    • Posters
    • Talks
  • Library
  • Join Us
  • Events
  • Photos
  • Internal
    • PC Pool
    • Group Calendar

PhD Student

Julia Westermayr
University of Vienna
Institute of Theoretical Chemistry
Währinger Str. 17
1090 Vienna
Austria

julia.westermayr@univie.ac.at
+43 1 4277 52766
Focus Area
The focus of my work is the development of artificial neural network potentials and their implementation into our own ab-initio molecular dynamics program SHARC (Surface Hopping including ARbitrary Couplings). By running molecular dynamics with the SHARC program, we are currently investigating the first step of the underlying mechanism of dityrosine crosslinking.
Awards & Prizes
  • 2019 Best Poster Award ISTCP-X
  • University of Vienna Uni:docs Fellowship
News
  • 18.07.2022 Bank Austria Anerkennungspreise für Julia Westermayr und Cornelia von Baeckmann
Publications
    16. F. Plasser, H. Lischka, R. Shepard, P. Szalay, R. Pitzer, R. Alves, A. Aquino, J. Autschbach, M. Barbatti, J. Carvalho, J. Chagas, L. González, A. Hansen, B. Jayee, M. Kertesz, F. Machado, S. Matsika, S. do Monte, S. MUKHERJEE, D. Nachtigallova, R. Nieman, V. Oliveira, M. Oppel, C. Parish, J. Pittner, L. Fonseca dos Santos, A. Scrinzi, M. Sit, R. Spada, M. Thodika, A. Vazquez-Mayagoitia, D. Valente, E. Ventura, J. Westermayr, A. Zaichenko, Z. Zhang
    COLUMBUS — an Efficient and General Program Package for Ground and Excited State Computations Including Spin-Orbit Couplings and Dynamics
    (submitted), (2025)

    15. M. Tiefenbacher, B. Bachmair, C. Cheng-Giuseppe, J. Westermayr, P. Marquetand, J. Dietschreit, L. González
    Excited-state Nonadiabatic Dynamics in Explicit Solvent Using Machine Learned Interatomic Potentials
    Digital Discovery 4, 1478-1491, (2025), DOI: 10.1039/D5DD00044K

    M. Tiefenbacher, B. Bachmair, C. Cheng-Giuseppe, J. Westermayr, P. Marquetand, J. Dietschreit, L. González
    Excited-state Nonadiabatic Dynamics in Explicit Solvent Using Machine Learned Interatomic Potentials
    arXiv, (2025), DOI: 10.48550/arXiv.2501.16974

    14. R. Barrett, J. Dietschreit, J. Westermayr
    Incorporating Long-Range Interactions via the Multipole Expansion into Ground and Excited-State Molecular Simulations
    arXiv:2502.21045 [physics.comp-ph] , , (2025), DOI: 10.48550/arXiv.2502.21045

    13. S. Mausenberger, C. Müller, A. Tkatchenko, P. Marquetand, L. González, J. Westermayr
    SpaiNN: Equivariant Message Passing for Excited-State Nonadiabatic Molecular Dynamics
    Chem. Sci. 15, 15880-15890, (2024), DOI: 10.1039/D4SC04164J

    12. J. Westermayr, P. O. Dral, P. Marquetand
    Focus on Learning Excited-state Properties in General
    Learning Excited-state Properties. In Quantum Chemistry in the Age of Machine Learning. Chapter 20 , 467-488, (2023), DOI: 10.1016/B978-0-323-90049-2.00004-4

    11. K. Cseh, H. Geisler, K. Stanojkovska, J. Westermayr, P. Brunmayr, D. Wenisch, N. Gajic, M. Hejl, M. Schaier, G. Koellensperger, M. Jakupec, P. Marquetand, W. Kandioller
    Arene Variation of Highly Cytotoxic Tridentate Naphthoquinone-Based Ruthenium (II) Complexes and In-Depth In Vitro Studies
    Pharmaceutics 14, 2466, (2022), DOI: 10.3390/pharmaceutics14112466

    10. J. Westermayr, M. Gastegger, D. Vörös, L. Panzenböck, F. Jörg, L. González, P. Marquetand
    Deep Learning Study of Tyrosine Reveals that Roaming can Lead to Photodamage
    Nat. Chem. 14 , 914–919, (2022), DOI: 10.1038/s41557-022-00950-z

    9. B. Lier, P. Poliak, P. Marquetand, J. Westermayr, C. Oostenbrink
    BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding Neural Network/Molecular Mechanics Simulations
    J. Chem. Phys. 13, 3812–3818, (2022), DOI: 10.1021/acs.jpclett.2c00654

    B. Lier, P. Poliak, P. Marquetand, J. Westermayr, C. Oostenbrink
    BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding Neural Network/Molecular Mechanics Simulations
    arXiv:2112.11395 [physics.chem-ph], (2021), DOI: 10.48550/arXiv.2112.11395

    8. H. Geisler, J. Westermayr, K. Cseh, D. Wenisch, V. Fuchs, S. Harringer, S. Plutzar, N. Gajic, M. Hejl, M. A. Jakupec, P. Marquetand, W. Kandioller
    Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies
    Inorg. Chem. 60, 9805–9819, (2021), DOI: 10.1021/acs.inorgchem.1c01083

    7. J. Westermayr, P. Marquetand
    Machine learning for electronically excited states of molecules
    Chem. Rev. 121, 9873-9926, (2021), DOI: 10.1021/acs.chemrev.0c00749

    J. Westermayr, P. Marquetand
    Machine learning for electronically excited states of molecules
    arXiv:2007.05320 [physics.chem-ph], (2020)

    6. J. Westermayr, P. Marquetand
    Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space
    J. Chem. Phys. 153, 154112, (2020), DOI: 10.1063/5.0021915

    J. Westermayr, P. Marquetand
    Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space
    arXiv:2007.07684 [physics.chem-ph], (2020)

    5. J. Westermayr, P. Marquetand
    Machine learning and excited-state molecular dynamics
    Mach. Learn.: Sci. Technol. 1, 043001, (2020), DOI: 10.1088/2632-2153/ab9c3e

    J. Westermayr, P. Marquetand
    Machine learning and excited-state molecular dynamics
    arXiv:2005.14139 [physics.chem-ph], (2020)

    4. J. Westermayr, M. Gastegger, P. Marquetand
    Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics
    J. Phys. Chem. Lett. 11, 3828-3834, (2020), DOI: 10.1021/acs.jpclett.0c00527

    J. Westermayr, M. Gastegger, P. Marquetand
    Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics
    arXiv:2002.07264 [physics.chem-ph], (2020)

    3. J. Westermayr, F. A. Faber, A. S. Christensen, O. A. von Lilienfeld, P. Marquetand
    Neural networks and kernel ridge regression for excited states dynamics of CH2NH+2: From single-state to multi-state representations and multi-property machine learning models
    Mach. Learn.: Sci. Technol. 1, 025009, (2020), DOI: 10.1088/2632-2153/ab88d0

    J. Westermayr, F. A. Faber, A. S. Christensen, O. A. von Lilienfeld, P. Marquetand
    Neural networks and kernel ridge regression for excited states dynamics of CH2NH2+: From single-state to multi-state representations and multi-property machine learning models
    arXiv:1912.08484 [physics.chem-ph], (2020)

    2. J. Westermayr, P. Marquetand
    Machine Learning for Nonadiabatic Molecular Dynamics In: Hugh Cartwright (ed) Machine Learning in Chemistry: The Impact of Artificial Intelligence
    Theoretical and Computational Chemistry Series, Royal Society of Chemistry , Chapter 4, (2020), DOI: 10.1039/9781839160233-00076

    1. J. Westermayr, M. Gastegger, M. Menger, S. Mai, L. González, P. Marquetand
    Machine Learning Enables Long Time Scale Molecular Photodynamics Simulations
    Chem. Sci. 10, 8100-8107, (2019), DOI: 10.1039/C9SC01742A

    Cover Image:
    Machine Learning Enables Long Time Scale Molecular Photodynamics Simulations
    Chem. Sci. 10, 8273-8273, (2019), DOI: 10.1039/C9SC90196E

    J. Westermayr, M. Gastegger, M. Menger, S. Mai, L. González, P. Marquetand
    Machine Learning Enables Long Time Scale Molecular Photodynamics Simulations
    arXiv:1811.09112 [physics.chem-ph], (2018)

Contact:
Univ.-Prof. Dr. Dr. h.c. Leticia González

Universität Wien
Institut für Theoretische Chemie
Währinger Str. 17 A-1090 Wien

phone:
+43-1-4277-52751 (secretary)
+43-1-4277-52750 (Prof. González)

email: office.theochem@univie.ac.at

  • Institute of Theoretical Chemistry
  • Faculty of Chemistry
  • University of Vienna
  • Sharc MD Program
  • ViRAPID
  • Catalight
  • Arbeitsgemeinschaft Theoretische Chemie
  • iStOMPS
  • Imprint
  • Privacy policy

Map
Copyright © 2025 González Research Group. Powered by WordPress. Theme: Spacious by ThemeGrill.